Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chunbo Liu, Guangbo Che,* Chuanbi Li and Yuncheng Cui

Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail:
guangbochesp@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.040$
$w R$ factor $=0.100$
Data-to-parameter ratio $=16.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

9,10-Bis[(phenylsulfanyl)methyl]anthracene

The title compound, $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~S}_{2}$, was obtained by the reaction of 9,10-bis(chloromethyl)anthracene with the sodium salt of thiophenol in ethanol. The molecule has an inversion centre, with the two phenyl fragments in the same plane; this plane is approximately orthogonal to the anthracene plane [dihedral angle $\left.=99.5(7)^{\circ}\right]$.

Comment

The design and syntheses of flexible multi-thioether ligands have attracted much attention due to their diverse coordination capabilities and the important properties of their metal complexes (Li et al., 2003; Xie et al., 2004). Recently, we synthesized a new dithioether ligand, namely 9,10-bis[(phenylsulfanyl)methyl]anthracene, (I). We report here the crystal structure of this dithioether ligand.

(I)

As shown in Fig. 1, the molecule of (I) has an inversion centre, with the two phenyl fragments located on different sides of the anthracene plane; thus the asymmetric unit contains only half of the molecule. The two phenyl fragments are in the same plane, which is approximately orthogonal to the anthracene plane, with a dihedral angle of $99.5(7)^{\circ}$. The two $\mathrm{C}-\mathrm{S}$ bonds, viz. $\mathrm{C} 1-\mathrm{S} 1$ and $\mathrm{C} 7-\mathrm{S} 1$, are 1.766 (2) and 1.811 (2) Å, respectively. The angles $\mathrm{C} 10-\mathrm{C} 7-\mathrm{S} 1$ and $\mathrm{C} 1-$ $\mathrm{S} 1-\mathrm{C} 7$ are 107.48 (12) and 103.82 (9) ${ }^{\circ}$, respectively. These bond lengths and angles are all in the normal ranges and compare well those observed in other analogues (Allen et al., 1987; Casabo et al., 1995).

Experimental

The title compound was prepared according to the literature method of Mikhailov et al. (1984). 9,10-Bis(chloromethyl)anthracene (Miller

Received 4 July 2005 Accepted 8 July 2005 Online 16 July 2005

organic papers

et al., 1955) ($2.75 \mathrm{~g}, 0.01 \mathrm{~mol}$) was added to a hot solution (about $323 \mathrm{~K})$ of thiophenol sodium salt $(2.64 \mathrm{~g}, 0.02 \mathrm{~mol})$ in ethanol (30 ml), and the mixture was further stirred at 323 K for 6 h . After cooling, water (30 ml) was added and the resulting mixture left to stand for 5 h . The yellow precipitate was filtered off, washed with ethanol and water, and recrystallized from a mixture of chloroform and methanol, giving single crystals suitable for X-ray diffraction (yield $3.17 \mathrm{~g}, 75 \%$, m.p. 518-520 K). Analysis calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~S}_{2}$: C 79.58, H 5.25, S 15.17%; found: C 79.23 , H 5.04, S 14.92\%.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~S}_{2} \\
& M_{r}=422.58 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=7.318(2) \AA \\
& b=9.736(3) \AA \\
& c=15.433(5) \AA \\
& \beta=98.178(5)^{\circ} \\
& V=1088.3(6) \AA^{\circ} \\
& Z=2
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detecter diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.946, T_{\text {max }}=0.955$
6070 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.100$
$S=1.02$
2215 reflections
136 parameters
H -atom parameters constrained
$D_{x}=1.290 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 897 reflections
$\theta=2.5-24.3^{\circ}$
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.22 \times 0.20 \times 0.18 \mathrm{~mm}$

> 2215 independent reflections
> 1536 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.036$
> $\theta_{\max }=26.4^{\circ}$
> $h=-8 \rightarrow 9$
> $k=-11 \rightarrow 12$
> $l=-19 \rightarrow 14$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0452 P)^{2}\right. \\
& \quad+0.1025 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.21 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
A drawing of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are related by the symmetry code $(1-x, 2-y, 1-z)$.

The H atoms were positioned geometrically and refined using a riding model, with fixed $\mathrm{C}-\mathrm{H}$ distances of $0.93(\mathrm{CH})$ and $0.96 \AA$ $\left(\mathrm{CH}_{2}\right)\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19

Bruker (1998). SMART, SAINT and SHELXTL (Version 5.16). Bruker AXS Inc., Madison, Wisconsin, USA.
Casabo , J., Flor, T., Hill, M. N. S., Jenkins, H. A., Lockhart, J. C., Loeb, S. J., Romero, I. \& Teixidor, F. (1995). Inorg. Chem. 34, 5410-5415.
Li, J. R., Zhang, R. H. \& Bu, X. H. (2003). Crystal Growth Des. 3, 829-835.
Mikhailov, A. S., Pashkurov, N. G., Reznik, V. S. \& Podzigun, G. I. (1984). Izv. Akad. Nauk SSSR Ser. Khim. pp. 1396-1402. (In Russian.)
Miller, M. W., Amidon, R. W. \& Tawney, P. O. (1955). J. Am. Chem. Soc. 77, 2845-2848.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xie, Y. B., Zhang, C. Li, J. R. \& Bu, X. H. (2004). Dalton Trans. pp. 562-569.

